The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells.
نویسندگان
چکیده
Mitochondria are dynamic organelles that change morphology by controlled fission and fusion events. Mitochondrial fission is regulated by a conserved protein complex assembled at the outer membrane. Human MTP18 is a novel nuclear-encoded mitochondrial membrane protein, implicated in controlling mitochondrial fission. Upon overexpression of MTP18, mitochondrial morphology was altered from filamentous to punctate structures suggesting excessive mitochondrial fission. Mitochondrial fragmentation was blocked in cells coexpressing either the mitochondrial fusion protein Mfn1 or Drp1(K38A), a dominant negative version of the fission protein Drp1. Also, a loss-of function of endogenous MTP18 by RNA interference (RNAi) resulted in highly fused mitochondria. Moreover, MTP18 appears to be required for mitochondrial fission because it is blocked after overexpression of hFis1 in cells with RNAi-mediated MTP18 knockdown. In conclusion, we propose that MTP18 functions as an essential intramitochondrial component of the mitochondrial division apparatus, contributing to the maintenance of mitochondrial morphology.
منابع مشابه
Mitochondrial protein 18 (MTP18) plays a pro-apoptotic role in chemotherapy-induced gastric cancer cell apoptosis
One of the severe limitations of chemotherapy is the development of drug resistance. However, the mechanisms underlying chemotherapy resistance remain to be elucidated. Mitochondrial mediated apoptosis is a form of cell death induced by chemotherapy. Several chemotherapeutic agents have been shown to induce mitochondrial fission, and finally activate the apoptosis cascade in various cancer cell...
متن کاملmiR-125b controls monocyte adaptation to inflammation through mitochondrial metabolism and dynamics.
Metabolic changes drive monocyte differentiation and fate. Although abnormal mitochondria metabolism and innate immune responses participate in the pathogenesis of many inflammatory disorders, molecular events regulating mitochondrial activity to control life and death in monocytes remain poorly understood. We show here that, in human monocytes, microRNA-125b (miR-125b) attenuates the mitochond...
متن کاملThe mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1.
The yeast protein Fis1p has been shown to participate in mitochondrial fission mediated by the dynamin-related protein Dnm1p. In mammalian cells, the dynamin-like protein DLP1/Drp1 functions as a mitochondrial fission protein, but the mechanisms by which DLP1/Drp1 and the mitochondrial membrane interact during the fission process are undefined. In this study, we have tested the role of a mammal...
متن کاملThe Effect of Six Weeks of Endurance Training on Mitochondrial Level of OPA-1 Quadriceps in Streptozotocin-induced Diabetic Rats
Introduction: Mitochondrial dynamic disorders are attributed to many diseases such as diabetes. MFN2 and OPA-1 proteins are the main regulators of fusion, and DRP1 is the essential protein regulating mitochondrial fission. Increasing or decreasing the expression of relevant genes will cause an imbalance between these two processes. This study evaluated the effect of six weeks of aerobic trainin...
متن کاملMitochondrial fission proteins regulate programmed cell death in yeast.
The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mamma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 118 Pt 14 شماره
صفحات -
تاریخ انتشار 2005